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Abstract. An estimate of the low q−moment values of the assumed multifractal spectrum of Gold price,
Dow Jones Industrial Average (DJIA) and Bulgarian Lev - USA Dollar (BGL-USD) exchange rate over a
6 1/2 year time span has been made. The findings can be compared to the analysis made on 23 foreign
currency exchange rates by Vandewalle and Ausloos but there is a clear indication of some differences.
Comparison to fractional Brownian motion is made. The analysis shows that these three financial data are
not likely fractal but rather multifractal indeed.

PACS. 05.40.+j Fluctuation phenomena, random processes, and Brownian motion –
01.75.+m Science and society

1 Introduction

Evolution of foreign currency exchange rates are clearly
not ordinary random walks [1,2]: temporal correlations
exist. However, the nature of these correlations is actu-
ally not clear. Indeed, various models provide temporal
evolutions quite similar to real currency walks [3].

It seems that a primary consideration to be discussed
is the question of stationarity and also that of intermit-
tency (or not) of the data. This question occurs when dis-
cussing the legitimacy of the Auto-Regressive Conditional
Heteroscedasticity (ARCH) modelling [2,4,5]. It has been
shown that covariance stationarity, which is a fundamen-
tal hypothesis of ARCH modelling, is implausible for daily
data [5], although ARCH together with generalized econo-
metric models like GARCH [6] remain the most popular
models in the finance community. It can be shown from
a statistical physics point of view that these models are
still Brownian motion like [7] and thus fail to provide the
needed analysis about persistence or not of an index evo-
lution.

Recently, the interest of the statistical physics commu-
nity [8–36] for economic time dependent data series, has
been revived quite a relatively long time after pioneering
papers like that of Mandelbrot in 1959 [37]. Indeed, sta-
tistical physicists are familiar with the self-organization
of large systems containing many interacting agents [38],
systems thus apparently similar to those encountered in
the economic and financial fields.

A fundamentally and physically oriented question is
the existence (or not) of long-range power-law correla-
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tions [3,7] and short range ones [36] in foreign exchange
rates. Some time ago, the fractal nature has been dis-
cussed for such data, but the multifractal concepts [39]
which seem more sensible or realistic has already been
tested [40,41]. A multi-affine analysis [35,42] of several
foreign currency exchange rates has been recently pre-
sented by Vandewalle and Ausloos [41]. Sometimes a gen-
eralization of the multifractal formalism to singular func-
tions (signals) based on the wavelet analysis is prefered
[13,33,34,43]. This method has been recently applied to
financial data [15]. In the following we consider the low
moments of the multifractal spectrum for some specific
financial data, i.e. Dow Jones Industrial Average, Gold
price and BGL-USD exchange rate (Fig. 1).

From now on the data are normalized to unity on the
maximum value obtained during the examined time inter-
val, i.e. between February 1991 and May 1997. These are
daily data. Weekends and holidays have not been taken
into account in order to get some apparent continuity (or
identical intervals) along the ordinate scale. These were
recently used in order to search for short range correla-
tions through the low order variability diagrams [36]. The
Dow Jones and Gold price evolutions are new types of in-
dices examined with respect to the H1, C1 phase diagram
introduced in [41] in financial data, but already used in
turbulence and meteorology [44,45]. The BGL-USD ex-
change rate can serve as a test with respect to the 23
points reported in reference [41].

2 Theoretical framework

The technique consists in calculating the so-called “qth
order height-height correlation function” or “qth order
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Fig. 1. (a) Dow Jones Industrial Average index (DJIA) time
evolution. (b) Gold (GLD) price evolution between February
1991 and May 1997. (c) Exchange rate variability of Bulgarian
currency (BGL) with respect to the USA dollar (USD).

structure function” [46] of the normalized time-dependent
signal y(ti), i = 0, . . . , Λ

cq(τ) = 〈|y(ti+r)− y(ti)|
q〉τ (1)

where only non-zero terms are considered in the average
〈.〉τ taken over all couples (ti+r , ti) such that τ = |ti+r−ti|.

The generalized Hurst exponent H(q) is defined
through the relation

cq(τ) ∝ τqH(q), q ≥ 0. (2)

The structure function analysis provide an estimate of the
nonstationarity of the data. The intermittency of the sig-
nal is studied through the singular measure analysis of the
small-scale gradient field obtained from the data through

ε(r; l) =
r−1

∑l+r−1
i=l |y(ti+r)− y(ti)|

〈|y(ti+r)− y(ti)|〉
(3)

with

i = 0, . . . , Λ− r (4)

and

r = 1, 2, . . . , Λ = 2m. (5)

The scaling properties of the generating function are
searched for through

χq(τ) = 〈ε(r; l)q〉 ∼ τ−K(q), q ≥ 0 (6)

with τ as defined above. The K(q)-exponent is closely re-
lated to the generalized dimensions Dq = 1 −K(q)/(q −
1) [47]. The nonlinearity of both characteristics exponents,
qH(q) and K(q), describes the multifractality of the sig-
nal. If a linear dependence is obtained, then the signal is
monofractal or in other words, the data follows a simple
scaling law for these values of q.

Among the exponents H(q) and Dq, the roughness H1

and the sparseness C1 = 1−D1 have a physically mean-
ingful interpretation [48]. The q = 0, 1, and 2 moments
have some known physical relevance at this time through
generalized fractal dimensions [39]. The other moments
have a less obvious physical meaning.

3 Data analysis

Following the above lines of calculation, the results for
the Gold ingot (GLD) price, Dow Jones Industrial Aver-
age (DJIA) and BGL-USD exchange rate, as normalized
(see above) are given in Figures 2a to 2c. Statistical er-
ror bars are indicated when significative, i.e. for q-values
greater than one in general. They are estimated following
standard statistical data analysis [49]. The qH(q) function
is smoothly rising from zero such as the nonlinear depen-
dence, and therefore, the multifractality of the series, are
most pronounced for BGL-USD data. The K(q) function
appears, like in other cases [44,45] to have a small mini-
mum below q = 1. For q > 2 it rises with a linear slope
∼ 1.25 for the Dow Jones and the GLD series, but ∼ 0.6
for the BGL-USD series. It can be seen that C1 will be
different for different indices, though C1 is rather a local
measure at q = 1. Moreover, if a multifractality exists,
K(q) should be nonlinear. It is rather monofractal when
a linear behavior is obtained, but this might be debated
as originating from sampling limitations.

For values of q above q = 2 the sample size becomes no-
ticeable. The structure functions seem to reach an almost
constant regime, while the singular measures tend towards
a linear dependence. Also the larger error bars of the BGL-
USD series are interpreted to be due to the higher sensitiv-
ity toward sampling limitations of the signal related to the
higher extremas in different scales. Such properties of the
characteristic exponents are somewhat expected because
of the relatively short data series used here. However, a
nontrivial dependence for small and intermediate values
of q is observed. Nevertheless the concavity of the qH(q)-
function can be interpreted as denoting the multifractality
of the financial series. The convexity of the K(q)-function
indicates the multi-affinity of the absolute gradients of the
signals at small scales.
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Fig. 2. The low q-dispersion of qH(q) and K(q) for (a) the
exchange rate Bulgarian currency BGL to USD; (b) the Dow
Jones Industrial average; (c) the Gold price. Error bars are
indicated.

Because the time series are rather short it could be ar-
gued that intermittent and non-intermittent signals can-
not be discriminated upon. Some discussion about the rel-
evance of statistical errors on the H(q) spectrum can be
found in reference [24].

4 Discussion

The roughness (Hurst) exponent H1 has been calculated
from the correlation function c1(τ) supposed to behave
like

c1(τ) = 〈|y(ti+r)− y(ti)|〉τ ∼ τ
H1 . (7)

The roughness exponent H1 describes the excursion of
the signal. For the classical random walk (Brownian mo-
tion) [51], H1 = 1/2; for a persistent signal, H1 > 1/2;
and for an anti-persistent signal, H1 < 1/2. The C1 expo-
nent [46,48] is a measure of the intermittency lying in the

Fig. 3. The (H1,C1) phase diagram with data points for three
financial indices and fractional Brownian motion (fBm) as
studied in the text.

Table 1.

H1 C1

Dow Jones 0.5408±0.0999 0.213±0.011

Gold 0.6675±0.0859 0.196±0.012

BGL-USD 0.7208±0.0481 0.209± 0.046

fBm

H = 0.2 0.1859±0.1080 0.121±0.0042

H = 0.3 0.2846±0.0895 0.116±0.0045

H = 0.4 0.4010±0.0670 0.113±0.0050

H = 0.5 0.5124±0.0537 0.115±0.0058

H = 0.6 0.6270±0.0384 0.115±0.0063

H = 0.7 0.7459±0.0338 0.107±0.0055

H = 0.8 0.8495±0.0157 0.097±0.0041

signal y(t)

C1 =
dK(q)

dq

∣∣∣∣
q=1

(8)

which can be numerically estimated by measuring K(q)
around q = 1.

The values of the roughness H1 and the spareness or
intermittency parameter C1 as obtained from Figure 3 are
given in Table 1.

From the above BGL-USD data it can be observed
that H1 = 0.72, larger than the value found for other fi-
nancial exchange rates by Vandewalle and Ausloos [41].
Moreover the values of the GLD and DJIA variations fall
nicely in the (H1, C1) diagram (Fig. 3) in the vicinity of
the values corresponding to other foreign exchange data
and to microwave signals of the water vapor distribution
in the atmosphere for which H1 can be between 0.61 and
0.68 [45], and quite away from turbulence field data expo-
nents (H1 ∼ 0.33). It was also shown in [41] that time
series generated by the ARCH models have low inter-
mittency and look like a simple random walk from this
(H1, C1) point of view.
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It should be hereby emphasized that the intermittent
contribution (C1 6= 0) suggests that rare and large jumps
take inherently place in some data excursions. We found
rather large intermittency C1 ≈ 0.2 for the three financial
data of interest here in contrast to the exchange market
intermittency reported by other authors [35,41]. The den-
sity of these “jumps” is to be compared to that found in
geophysical signals like the evolution of the liquid content
in clouds for which C1 ≈ 0.10 [48], and microwave signals
from atmospheric water vapor content, where C1 varies
between 0.10 and 0.15 [45].

Of course both H1 and C1 values may change with
time and depend on the interval over which the numerical
analysis is performed. This is certainly one major reason
among others to consider a multifractal analysis and spec-
trum.

5 Fractional Brownian motion

Precise reference signals are required to evaluate methods
for characterizing a fractal time series and before reaching
any definite conclusion [50]. In order to test the reliability
of the above analysis on one hand, and to attempt to pro-
vide a non trivial set of models for this type of financial
data behavior we have used the above low q−moment mul-
tifractal analysis method on fractional (univariate) Brow-
nian motion (fBm) [51,52]. The number of data points
has been taken identical to that of the financial data se-
ries. The examined fBm series have the predefined Hurst
exponent H1 = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.

The resulting qH(q) and K(q) functions for selected
fBm curves (H1 = 0.3, 0.5, 0.8) are given in Figure 4,
while the corresponding (H1, C1) values are reported in
Figure 3. As it was expected for all fBm cases the qH(q)
dependence of q is a straight line with slope H1. Table 1
contains (H1, C1) values for all fBm cases. Moreover the
relationship between the predefined and numerically ob-
tained values of H1 for the fBm is given in Figure 5. It
is observed that there is no systematic deviation of the
latter values. In contrast the values of C1 for the fBm
signals are of the order of 0.1 and slowly varying even
within the error bars. Since C1 = 1 − D1, where D1 is
the information dimension [47,53], it appears that such a
finite value of C1 is likely due to the finite size of the se-
ries. The relevance of finite size effects in fractal analysis is
well-known and indicates that the signals are only quasi-
fractal indeed. This should be taken into account when
comparing data analyzed from different “samples”. How-
ever the above analysis allows us to have some insight on
extrinsic error bars in contrast to intrinsic ones due to the
data a priori assumed statistical distribution itself, i.e. a
Gaussian one, as those indicated in the figures.

Finally, even though the low q > 0 region of a fractal
signal can be easily treated, one should be aware that dif-
ficulties arise in applying a multifractal analysis for the
q < 0 region to the height-height correlation function
[8,33], and therefore a full multifractal analysis is very
arduous. The more so here because the relatively small

Fig. 4. The low q-dispersion qH(q) and K(q) functions of
selected fBm time series.

Fig. 5. The measured H1 vs. the predetermined Hurst expo-
nent value of a few fBm time series.

statistics and the interplay between intrinsic and extrin-
sic error bars in most financial data do not seem to be well
understood at this time. Tests of various physics-like mod-
els should thus request also some further thought. Nev-
ertheless, we have shown that a significant intermittent
component (C1 6= 0) exists and depends on the nature of
the trading market.
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